Synthesis of \mathbf{N}^{1}-unsubstituted β-lactams: Introducing \mathbf{N}^{1}-(1^{\prime}-thiophenyl)benzyl as an \mathbf{N}-protecting group

K. Karupaiyan, V. Srirajan, A. R. A. S. Deshmukh and B. M. Bhawal*
Division of Organic Chemistry (Synthesis)
National Chemical Laboratory, Pune 411 008, India

Abstract

A diastereoselective synthesis of (\pm) cis- β-lactams (5 \& 6) via cycloaddition reaction of N^{1}-(α-thiophenyl)benzyl imines (3) with acid chlorides (4) in the presence of triethyl amine is described. Deprotection of \mathbf{N}^{1}-(α-thiophenyl)benzyl group was achieved in good yields by oxidation using potassium persulfate. © 1997 Elsevier Science Ltd.

N -Unsubstituted β-lactams are intermediates in the synthesis of monocyclic and bicyclic β-lactam antibiotics. ${ }^{1}$ As a part of our ongoing project on β-lactam synthon method ${ }^{2}$ for the synthesis of natural and unnatural products, we were interested in developing methods for the preparation of NH- β-lactams. Generally, the selection of N^{1}-protective groups in β-lactam synthesis is based on the ease of selective removal of these groups at the appropriate stage. Benzyl, ${ }^{3}$ allyl, ${ }^{4}$ silyl ${ }^{5}$ and p-methoxyphenyl ${ }^{6}$ groups are often used for N^{1}-protection and can be removed under various conditions to get $\mathrm{N}-\mathrm{H} \beta$-lactams. In this communication we report the utility of (α-thiophenyl)benzyl as an N^{1}-protective group and its oxidative removal using potassium persulfate to yield N -unsubstituted β-lactams.

The starting hydrobenzamide ${ }^{7}$ [1-phenyl-N, N^{\prime}-bis(phenylmethylene)methane diamine (2a) \& 1-p-anisyl- $\mathrm{N}, \mathrm{N}^{\prime}$-bis-(p-anisylmethylene)methane diamine ($\mathbf{2 b}$)] were readily obtained in excellent yields by stirring a mixture of aromatic aldehydes ($\mathbf{1 a , b}$) with a 10 fold excess of aq. ammonia solution (30%) for 3 h . The reaction of $\mathbf{2 a}, \mathbf{b}$ with thiophenol in refluxing dioxane afforded imines $3 \mathrm{a}, \mathrm{b}$ in good yield ${ }^{8}$ (Scheme 1).

Scheme 1

Cycloaddition reaction of the imines $3 \mathrm{a}, \mathrm{b}$ with various acid chlorides (4a-c) in presence of triethylamine gave diastereomeric mixtures of (\pm)-cis- β-lactams ${ }^{9}$ (5a-d \& 6a-d) ${ }^{10}$ in $50-79 \%$ yield (Table 1, Scheme 2). The diastereomeric ratio was determined by the HPLC ${ }^{11}$ and ${ }^{1} \mathrm{H}$ NMR analyses of crude reaction mixtures. The major (5) and minor (6) diastereomers were separated by crystallization.

Sheme 2

The relative stereochemistry of the major diastereomer 5 a was established as $3 S, 4 R, 1^{\prime} S$ by single crystal X-ray analysis ${ }^{12}$ (Fig. 1).

Fig. 1. The ORTEP diagram of the β-lactam 5a

The chiral acid chloride ($\mathbf{4 d}, \mathrm{R}^{2}=l$-menthyl), on reaction with imine 3 a under similar reaction conditions gave a diastereomeric mixture of four cis- β-lactams in the ratio of 35:35:18:12 (HPLC, ${ }^{1} \mathrm{H}$ NMR). One of the diasteromers was isolated in the pure form by crystallization (acetone-petroleum ether) from the mixture.

Individual diastereomers 5 or 6 , or a mixture of $5 \& 6$, reacted with potassium persulfate (acetonitrile/water, reflux, 4 h) to give the N -unsubstituted β-lactams (7) ${ }^{13}$ in good yields (Scheme 2, Table 1).

Table 1. Synthesis of β-lactams 5a-e \& 6a-e and N^{1}-unsubstituted β-lactams 7a,b,d,e.

Compd.	R^{1}	R^{2}	Compound 5 \& 6			Compound 7	
			Yield ${ }^{\text {a }}$ (\%)	Ratio ${ }^{\text {b }}$ of 5 \& 6	m.p. of $5\left({ }^{\circ} \mathrm{C}\right)$	yield ${ }^{\text {c }}$ (\%)	m.p. $\left({ }^{\circ} \mathrm{C}\right)$
a	Ph	PhO	74	74:26	214-215	70	159-160
b	Ph	BnO	58	64:36	119-120	64	188-189
c	Ph	AcO	50	74:26	153-154	--	--
d	Anisyl	PhO	79	83:17	157-159	70	165-167
e	Ph	$b_{0} m_{m}$	62	35:35:18:12 ${ }^{\text {d }}$	$158-160^{\text {e }}$	65	173-174 ${ }^{\text {f }}$

${ }^{a}$ Isolated yields of diastereomeric mixture of $5 \& 6$; ${ }^{b}$ Ratio of $5 \& 6$ from HPLC and ${ }^{1} \mathrm{H}$ NMR spectral data;
${ }^{c}$ Isolated yield; ${ }^{d}$ Ratio of four diastereomers; ${ }^{e}$ M.p. of one of the pure diastereomer isolated from the mixture by crystallization; ${ }^{\mathfrak{f}}$ Prepared from the pure diastereomer obtained by crystallization.

In summary, we have introduced (α-thiophenyl)benzyl as a novel N-protective group in β-lactam molecules, which can be removed via mild oxidative conditions tolerated by most common organic functional groups.

Acknowledgment : We thank Dr. A. Sarkar for valuable suggestions and the authors (K.K. \& V.S.) thanks CSIR for the financial support.

References and Notes :

1. a) Morin, R. B.; Gorman, H.; Ed, "Chemistry and Biology of β-lactam antibiotics" Acadamic press, Vol. 1, New York, 1982. b) Sammes, P.G.; Ed, "Topics in Antibiotic Chemistry" Vol. 3, Ellis Howood Ltd., 1980. c) O'Sullivan, J.; Abraham, E.P.; "Antibiotics" Vol. IV Ed., Springer - Verlag : Berlin, 1981. d) Recent progress in the Chemical synthesis of Antibiotics : Lukacs, G.; Ohno, M.; Eds.; Springer : Berlin, 1990. e) Georg, G. I.; Ed, "Organic Chemistry of β-lactams" VCH, New York, 1993. f) Ojima, I. Acc. Chem. Res. 1995, 28, 383.
2. a) Srirajan, V.; Deshmukh, A.R.A.S.; Puranik, V.G.; Bhawal, B.M. Tetrahedron Asymmetry, 1996, 7, 2733. b) Srirajan, V.; Deshmukh, A.R.A.S.; Bhawal, B.M. Tetrahedron, 1996, 52, 5585. c) Jayaraman, M.; Puranik, V.G.; Bhawal, B.M. Tetrahedron 1996, 52, 9005.
3. a) Reuschling, D.; Pietsch, H.; Linkies, A. Tetrahedron Lett. 1978, 618. b) Evans, D.A.; Sjogren, E.B. Tetrahedron Lett. 1985, 26, 3783, 3787. c) Thomas, R.C. Tetrahedron Lett. 1989, 30, 5239. d) Aszodi, J.; Bonnet, A.; Teutsch, G. Tetrahedron 1990, 46, 1579. d) Kishimoto, S.; Sendai, M.; Tomimoto, M.; Hashiguchi, S.; Matsuo, T.; Ochiai, M. Chem. Pharm. Bull. 1984, 32, 2646.
4. a) Georg, G.I.; Kant, J.; He, P.; Ly, A.M.; Lampe, L. Tetrahedron Lett. 1988, 29, 2409. b) Georg, G.I.; He, P.; Kant, J.; Mudd, J. Tetrahedron Lett. 1990, 31, 1497. c) Bhattrai, K.; Cainelli, G.; Panunzio, M. Synlett 1990, 229. d) Yanagisawa, H.; Ando, A.; Shiozaki, M.; Hiraoka, T. Tetrahedron Lett. 1983, 24, 1037.
5. a) Iimori, T.; Takahashi, Y.; Izawa, T.; Kobayashi, S.; Ohno, M.J. J. Am. Chem. Soc. 1983, 105, 1659. b) Kametani, T.; Nagahara, T.; Honda, T. J. Org. Chem. 1985, 50, 2327. c) Dolle, R.E.; Hughes, M.J.; Li, C.-S.; Kruse, L.I. J. Chem. Soc. Chem. Commun. 1989, 148. d) Shibya, M.; Jinbo, Y.; Kubota, S. Chem. Pharm. Bull. 1984, 32, 1303. e) Okano, K.; Kyotani, Y.; Ishihama, H.; Kobayashi, S.; Ohno, M. J. Am. Chem. Soc. 1983, 105, 7186. f) Shibasaki, M.; Ishida, Y.; Okabe, N. Tetrahedron Lett. 1985, 26, 2217.
6. a) Kronenthal, D.R.; Han, C.Y.; Taylor, M.K. J. Org. Chem. 1982, 47, 2765. b) Corley, E.G.; Karady, S.; Abramson, N.L.; Ellison, D.; Weinstock, L.M. Tetrahedron Lett. 1988, 29, 2409.
7. Kupfer, R.; Brinker, U.H. J. Org. Chem. 1996, 61,4185 and references cited therein.
8. Dougherty, G.; Taylor, W.H. J. Am. Chem. Soc. 1933, 55, 4588.
9. The formation of the cis- isomer only was observed as confirmed from ${ }^{1} \mathrm{H}$ NMR analysis $\left(J_{3,4}=4-5\right.$ Hz) of the crude reaction mixture.
10. Typical procedure for β-lactams $5 a \& 6 a$: A solution of the acid chloride ($4 \mathrm{a}, 320 \mathrm{mg}, 2 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (10 mL) was slowly added to a solution of imines ($3 \mathrm{a}, 450 \mathrm{mg}, 1.5 \mathrm{mmol}$) and triethylamine ($600 \mathrm{mg}, 6 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The reaction mixture was then allowed to warm to r.t. and stirred further for 13 h . The usual work gave a diastereomeric mixture of β-lactams ($\mathbf{5 a} \& 6 \mathbf{6}$) in 74% yields. The major diastereomer $5 a$ was separated by crystallization from pet. ether - acetone.
(5a) : M. p. 214-215 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR : $\delta 5.0(\mathrm{~d}, J=5 \mathrm{~Hz}, 1 \mathrm{H}) ; 5.2(\mathrm{~d}, J=5 \mathrm{~Hz}, 1 \mathrm{H}) ; 6.47(\mathrm{~s}, 1 \mathrm{H}) ; 6.8(\mathrm{~d}$, $J=10 \mathrm{~Hz}, 2 \mathrm{H}) ; 6.83(\mathrm{t}, J=10 \mathrm{~Hz}, 1 \mathrm{H}) ; 6.95-7.70(\mathrm{~m}, 17 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR : 61.20, $62.34,81.22,115.64$, $122.00,127.55,127.85,128.08,128.22,128.57,128.81,129.08,129.42,132.49,133.03,135.07$, 156.87, 165.98. IR : $1740 \mathrm{~cm}^{-1}$. Anal. for Cald $\mathrm{C}_{28} \mathrm{H}_{23} \mathrm{O}_{2} \mathrm{NS}: \mathrm{C}, 76.86 ; \mathrm{H}, 5.30 ; \mathrm{N}, 3.20 ; \mathrm{S}, 7.33$. Found : C, 76.68; H, 5.37; N, 3.27.
(6a) : Isolated as an oil. ${ }^{1} \mathrm{H}$ NMR : $\delta 4.45(\mathrm{~d}, J=5 \mathrm{~Hz}, 1 \mathrm{H}) ; 5.2(\mathrm{~d}, J=5 \mathrm{~Hz}, 1 \mathrm{H}) ; 6.15(\mathrm{~s}, 1 \mathrm{H}) ; 6.6$ (d, $J=10 \mathrm{~Hz}, 2 \mathrm{H}) ; 6.85(\mathrm{t}, J=10 \mathrm{~Hz}, 1 \mathrm{H}) ; 6.95-7.60(\mathrm{~m}, 17 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR : 63.23, 63.93, 80.30, 115.56, $121.95,127.84,128.06,128.64,128.75,129.05,129.44,132.28,133.04,133.54,135.78,156.79$, 164.91. IR : $1740 \mathrm{~cm}^{-1}$.
11. HPLC : Perkin-Elmer 410-pump. H.P. 1050 MWD at 254 nm connected to H-P 3396 Ser-II integrater. Col. MN-C-18, $8 \mathrm{~mm}, 4 \mathrm{~mm}$ X 100 mm length. Solvent system (v/v): $80: 20\left(\mathrm{MeOH}: \mathrm{H}_{2} \mathrm{O}\right)$ flow rate $1.5 \mathrm{~mL} / \mathrm{min}$.
12. For details see : Srirajan, V.; Bhawal, B.M; Puranik, V.G. Acta. Cryst. C (in press).
13. Typical procedure for 3-Phenoxy-4-phenylazetidin-2-one (7a) : A mixture of $5 \mathrm{a}(0.088 \mathrm{~g}, 0.2 \mathrm{mmol})$, acetonitrile (8 mL), water (3 mL), and potassium persulfate ($0.162 \mathrm{~g}, 0.6 \mathrm{mmol}$) was refluxed for 4 h . The solvent was removed by distillation under reduced pressure and the residue on usual work up gave 7 a in 70% yield. M.p. $159-160^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR : $\delta 5.05(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}$) ; $5.5(\mathrm{dd}, J=4.8 \& 5.5 \mathrm{~Hz}$, 1 H); 6.6 (bs, 1 H); 6.8 (two d, $J=9 \mathrm{~Hz}, 2 \mathrm{H}$) ; $6.9(\mathrm{t}, \mathrm{J}=9 \mathrm{~Hz}, 1 \mathrm{H}$) ; 7.10-7.40 (m, 7H,). IR : $2800-$ $3500,1770 \mathrm{~cm}^{-1}$. Anal. Cald for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{NO}_{2}: \mathrm{C}, 75.30 ; \mathrm{H}, 5.48 ; \mathrm{N}, 5.85$. Found : C, 75.51; H, 5.73; N, 5.62 .
